
3 - 10 Reduction of order
Reduce to first order and solve, showing each step in detail.

3. y ' ' + y '  = 0

Reduction of order is something that Mathematica does not generally need to do.
eqn = y''[x] + y'[x] ⩵ 0

y′[x] + y′′[x] ⩵ 0

sol = DSolve[eqn, y, x]

{{y → Function[{x}, -−ⅇ-−x C[1] + C[2]]}}

eqn /∕. sol /∕/∕ Simplify

{True}

5.  y y ' ' = 3 (y ')2

eqn = y[x] y''[x] ⩵ 3 y'[x]2

y[x] y′′[x] ⩵ 3 y′[x]2

sol = DSolve[eqn, y, x]

y → Function{x},
C[2]

2 x + C[1]


eqn /∕. sol /∕/∕ Simplify

{True}

The text answer is 1 c1 x+ c2 . So Mathematica and the text answer each have assigned a 

value to one of their three constants. This leaves leeway for the remaining assignments to 
be made in such a way that the two solutions become equivalent.

7.  y ' ' + y ' 3Sin[y] = 0

ClearAll["Global`*⋆"]

This problem is a topsy-turvy little trip with an inverted domain. The substitution z = y '[x] 
is made. Afterwards there is the form
eqn2 = z'[y] z[y] ⩵ -−z[y]3 Sin[y]

z[y] z′[y] ⩵ -−Sin[y] z[y]3

Which can be processed by DSolve into the solution



sol2 = DSolve[eqn2, z, y]

{z → Function[{y}, 0]}, z → Function{y},
1

-−C[1] -− Cos[y]


The above green cell agrees with the text, though the text uses the inverted form of the 

fractional expression, calling it ⅆxⅆy  . Using the terms of the substitution, the solution checks 

out.
eqn2 /∕. sol2 /∕/∕ Simplify

{True, True}

The next step is to reverse the substitution level by solving again.
eqn3 = -−x'[y] == C[1] + Cos[y]

-−x′[y] ⩵ C[1] + Cos[y]

sol3 = DSolve[eqn3, x, y]

{{x → Function[{y}, -−y C[1] + C[2] -− Sin[y]]}}

The green cell above matches the final answer in the text, with the provision that the sign 
on the constant -C[1] is opposite to the constant c1 in the text. The second use of DSolve 
also checks out true.
eqn3 /∕. sol3

{True}

9.  x2 y ' ' -5x y ' +9 y = 0, y1 = x3

ClearAll["Global`*⋆"]

The substitution y1 = x3 works as advertised as a singular solution. If it is ignored,
eqn = x2 y''[x] -− 5 x y'[x] + 9 y[x] ⩵ 0

9 y[x] -− 5 x y′[x] + x2 y′′[x] ⩵ 0

then Mathematica comes up with an equivalent solution, so long as C[1] is assigned the 
value 0 and C[2] is assigned the value 1

3 .

sol = DSolve[eqn, y, x]

y → Function{x}, x3 C[1] + 3 x3 C[2] Log[x]

The Mathematica solution, neither more nor less general than the text, checks out.
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eqn /∕. sol /∕/∕ Simplify

{True}

11 - 14 Applications of reducible ODEs

11. Curve. Find the curve through the origin in the xy-plane which satisfies y ' ' = 2 y ' and 
whose tangent at the origin has slope 1.

In[1]:= ClearAll["Global`*⋆"]

In[2]:= eqn = y''[x] ⩵ 2 y'[x]

Out[2]= y′′[x] ⩵ 2 y′[x]

In[3]:= sol = DSolve[{eqn, y'[0] ⩵ 1, y[0] ⩵ 0}, y, x]

Out[3]= y → Function{x},
1

2
-−1 + ⅇ2 x

The text solution is y = c1 ⅇ2 x + c2, which is not capable of fulfilling the initial conditions in 
the problem description unless c1 and c2 take on the values - 1

2  and 1
2  respectively, i.e. unless 

the expression equals the green cell above. 

In[13]:= Plot
1

2
-−1 + ⅇ2 x, -−0.5 + 0.5 ⅇ2 x, {x, -−2, 2},

AspectRatio → Automatic, PlotRange → {{-−2, 2}, {-−2, 2}}, PlotStyle →
{{Thickness[0.01]}, {White, Thickness[0.004]}}, ImageSize → 250

Out[13]=
-−2 -−1 1 2

-−2

-−1

1

2

13.  Motion. If, in the motion of a small body on a straight line, the sum of the velocity 
and acceleration equals a positive constant, how will the distance y[t] depend on the 
initial velocity and position?

ClearAll["Global`*⋆"]

First, there is an objection against the statement that the sum of velocity and acceleration 
equals a constant. The two quantities have different units, so they can’t be added. The 
problem must mean to stipulate that the sum of the coefficients of acceleration and velocity 
add to a constant. To try to understand this a little bit, I will plot the text answer.
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First, there is an objection against the statement that the sum of velocity and acceleration 
equals a constant. The two quantities have different units, so they can’t be added. The 
problem must mean to stipulate that the sum of the coefficients of acceleration and velocity 
add to a constant. To try to understand this a little bit, I will plot the text answer.
y[t_] = c1 ⅇ-−t + k t + c2
k t + ⅇ-−t c1 + c2

The grid squares do not appear as squares, but the axes’s major ticks seem to be about 
equal. The problem is supposed to be about travel along a straight line; here the straight 
line must be the y-axis. With my choice of c1, c2, and k = 1 , the starting point must be y = 
2, and sum of acceleration and velocity must be 1, and the starting velocity must be 1.

Plotⅇ-−t + t + 1, ⅇ-−t, {t, 0, 5},

AspectRatio → 1.3, ImageSize → 300, GridLines → All

tid = NTablet, ⅇ-−t + t + 1, {t, 0, 15}

{{0., 2.}, {1., 2.36788}, {2., 3.13534},
{3., 4.04979}, {4., 5.01832}, {5., 6.00674}, {6., 7.00248},
{7., 8.00091}, {8., 9.00034}, {9., 10.0001}, {10., 11.},
{11., 12.}, {12., 13.}, {13., 14.}, {14., 15.}, {15., 16.}}

What can be seen from the two cells below is that by the time t=14, acceleration has nearly 
disappeared, which means that added velocity is also nearly gone, and the travel velocity is 
at the rate of the starting velocity.
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tir = Table[tid[[n]][[2]] -− tid[[n]][[1]], {n, 15}]

{2., 1.36788, 1.13534, 1.04979, 1.01832, 1.00674, 1.00248,
1.00091, 1.00034, 1.00012, 1.00005, 1.00002, 1.00001, 1., 1.}

Nⅇ-−14

8.31529 × 10-−7

y'[t]

k -− ⅇ-−t c1

As for the actual problem question, the initial position and initial velocity determine the 
position of the moving particle in the manner described in the equation for y, governed 
by the choice of constants.

15 - 19 General solution. Initial value problem (IVP)
(More in the next set.) (a) Verify that the given functions are linearly independent and 
form a basis of solutions of the given ODE. (b) Solve the IVP. Graph or sketch the 
solution.

15.  4 y '' + 25 y = 0, y[0] = 3.0, y '[0] = -2.5, Cos[2.5 x], Sin[2.5 x]

ClearAll["Global`*⋆"]

By inspection, the two trig expressions are independent. (For example, at the time each 
periodically equals zero, there is no constant which can be multiplied by the zero value to 
equal the non-zero value of the other.) To test whether they are solutions,
eqn = 4 y''[x] + 25 y[x] ⩵ 0

25 y[x] + 4 y′′[x] ⩵ 0

sol = DSolve[{eqn, y[0] ⩵ 3.0, y'[0] ⩵ -−2.5}, y, x]

y → Function{x}, 3. Cos
5 x

2
 -− 1. Sin

5 x

2


The solution checks.
eqn /∕. sol /∕/∕ Simplify

{True}

The two proposed solutions check.
eqn /∕. Cos[2.5 x] /∕/∕ Simplify
ReplaceAll::reps:
{Cos[2.5x]} is neithera listof replacementrulesnora validdispatchtable, andso cannotbe usedfor replacing. ,

True /∕. Cos[2.5 x]
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eqn /∕. Sin[2.5 x] /∕/∕ Simplify

ReplaceAll::reps: {Sin[2.5x]} is neithera listof replacementrulesnora validdispatchtable, andso cannotbe usedfor replacing. ,

True /∕. Sin[2.5 x]

Plot3.` Cos
5 x

2
 -− 1.` Sin

5 x

2
, {x, -−3, 3},

AspectRatio → Automatic, ImageSize → 200, GridLines → All

17.  4 x2 y ' ' -3 y =0, y(1) = -3, y '(1) = 0, x3/∕2 , x-−1/∕2

ClearAll["Global`*⋆"]

eqn = 4 x2 y''[x] -− 3 y[x] ⩵ 0

-−3 y[x] + 4 x2 y′′[x] ⩵ 0

sol = DSolve[{eqn, y[1] ⩵ -−3, y'[1] ⩵ 0}, y, x]

y → Function{x}, -−
3 3 + x2

4 x


eqn /∕. sol

{True}

Although they look a little different due to their format, the green cell above and the text 
answer are equivalent.

PossibleZeroQ-−
3 3 + x2

4 x
-− -−0.75 x3/∕2 -− 2.25 x-−1/∕2

True

Checking the proposed solutions is a little more complicated than usual.
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d2 = Dx3/∕2, {x, 2}

3

4 x

eqn /∕. y[x] -−> x3/∕2, y''[x] → d2

True

d22 = Dx-−1/∕2, {x, 2}

3

4 x5/∕2

eqn /∕. y[x] -−> x-−1/∕2, y''[x] → d22

True

Plot-−
3 3 + x2

4 x
, {x, -−2, 4}, AspectRatio → Automatic,

ImageSize → 200, GridLines → All, PlotRange → {{-−2, 4}, {-−10, -−2}}

19.  y '' + 2 y ' +2 y = 0, y(0) = 0, y '(0) = 15, ⅇ-−x Cos[x], ⅇ-−x Sin[x] 

ClearAll["Global`*⋆"]
eqn = y''[x] + 2 y'[x] + 2 y[x] ⩵ 0;

The two given functions are linearly independent by the same argument used for the trig 
functions in problem 15. Next, the IVP is solved.

In[27]:= sol = DSolve[{eqn, y[0] ⩵ 0, y'[0] ⩵ 15}, y, x]

Out[27]= {{y → Function[{x}, 15 ⅇ-−x Sin[x]]}}

Since it does not match the text answer, the solution above is shown in yellow. The Mathe-
matica solution to the IVP is checked:
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Since it does not match the text answer, the solution above is shown in yellow. The Mathe-
matica solution to the IVP is checked:

In[17]:= eqn /∕. sol /∕/∕ Simplify

Out[17]= {True}

The first given function is checked to see if it qualifies as a solution.
In[18]:= f1[x_] = ⅇ-−x Cos[x]

Out[18]= ⅇ-−x Cos[x]

In[19]:= d1 = D[f1[x], x]

Out[19]= -−ⅇ-−x Cos[x] -− ⅇ-−x Sin[x]

In[20]:= d2 = D[f1[x], {x, 2}]

Out[20]= 2 ⅇ-−x Sin[x]

The first given function is found to qualify.
In[21]:= eqn /∕. {y[x] → f1[x], y'[x] → d1, y''[x] → d2} /∕/∕ Simplify

Out[21]= True

The second given function is checked to see if it qualifies as a solution.
In[22]:= f2[x_] = ⅇ-−x Sin[x]

Out[22]= ⅇ-−x Sin[x]

In[23]:= d11 = D[f2[x], x]

Out[23]= ⅇ-−x Cos[x] -− ⅇ-−x Sin[x]

In[24]:= d22 = D[f2[x], {x, 2}]

Out[24]= -−2 ⅇ-−x Cos[x]

The second given function is found to qualify.
In[25]:= eqn /∕. {y[x] → f2[x], y'[x] → d11, y''[x] → d22} /∕/∕ Simplify

Out[25]= True

The text answer is checked to see if it is a solution.
In[29]:= f3[x_] = 15 ⅇ-−x -− Sin[2.5 x]

Out[29]= 15 ⅇ-−x -− Sin[2.5 x]

In[30]:= d111 = D[f3[x], x]

Out[30]= -−15 ⅇ-−x -− 2.5 Cos[2.5 x]

In[31]:= d222 = D[f3[x], {x, 2}]

Out[31]= 15 ⅇ-−x + 6.25 Sin[2.5 x]
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The text answer is found to not qualify as a solution. 
In[32]:= eqn /∕. {y[x] → f3[x], y'[x] → d111, y''[x] → d222} /∕/∕ Simplify

Out[32]= 1. Cos[2.5 x] ⩵ 3. ⅇ-−x + 0.85 Sin[2.5 x]

There appears to be a typo in the text answer. A plot of the Mathematica solution is made.
In[26]:= Plot[15 ⅇ-−x Sin[x], {x, -−1, 2}, AspectRatio → Automatic,

ImageSize → 150, GridLines → All, PlotRange → {{-−1, 2}, {-−1, 5}}]

Out[26]=
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